Pagkakaiba sa pagitan ng mga pagbago ng "Pamantayang Modelo"

walang buod ng pagbabago
m (r2.7.3) (robot dinagdag: hi:मानक प्रतिमान)
Ang '''Pamantayang Modelo''' ng [[pisikang partikulo]] ang [[teoriyang siyentipiko]] na nauukol sa mga interaksiyong [[elektromagnetismo|elektromagnetiko]], [[interaksiyong mahina|mahina]] at [[interaksiyong malakas|malakas]] na namamagitan sa dinamika ng mga alam na subatomikong partikulo. Ang kasalukuyang pormulasyon nito ay nakumpleto noong mga 1970 sa kompirmasyon sa mga eksperimento ng pag-iral ng mga [[quark]]. Simula nito, ang pagkakatuklas ng mga partikulong ilalim na quark, itaas na quark at tau neutrino(2000) ang karagdagang nagbigay kredensiya sa teoriyang ito. Ang kamakailang maliwanag na deteksiyon ng [[Higgs boson]] noong 2011-2012 ay kumukumpleto sa mga hinulaang partikulo ng teoriyang ito. Ang Pamantayang Modelo ay nagkukulang sa pagiging kumpletong teoriya ng mga pundamental na interaksiyon dahil sa hindi nito pagsasama ng buong teoriya ng [[grabitasyon]] gaya ng inilalarawan ng [[pangkalahatang relatibidad]] o humuhula sa papabilis na paglawak ng uniberso na posibleng inilalarawan ng enerhiyang madilim. Ang teoriya ay hindi naglalaman ng anumang partikulo na materyang madilim na nag-aangkin ng lahat ng mga katangian na mahihinuha mula sa pagmamasid sa kosmolohiya. Ito ay hindi rin tamang nagpapaliwanag ng mga osilasyong neutrino at mga hindi sero nitong masa. Bagaman pinaniniwalaang konsistente sa sarili, ito ay may ilang maliwanag na mga hindi natural na katangiang na nagpapalitaw ng mga palaisipan gaya ng problemang malakas na CP at ang probelamang hierarka. Gayunpaman, ang Pamantayang Modelo ay mahalaga sa mga pisikong teoretikal at eksperimental. Para sa mga teorista, ang Pamantayang Modelo ang paradigm ng [[teoriyang quantum field]] na nagpapakita ng isang malawak na saklaw ng pisika kabilang ang kusang loob na pagkasira ng simetriya, mga anomalya, pag-aasal na hindi perturbatibo etc. Ito ay ginagamit bilang basehan ng pagtatayo ng mas eksotikong mga modelo na nagsasama ng mga partikulong hipotetikal, ekstrang dimensiyong, at mga simetriya gaya ng supersimetriya sa pagtatangkang ipaliwanag ang mga resulta ng eksperimento na iba sa Pamantayang Model gaya ng pag-iral ng materyang madilim at mga osilasyong neutrino. Ang mga nag-eeksperimento ay nagsama naman ng Pamantayang Modelo sa mga simulado upang makatulong sa paghahanap ng bagong pisika na lagpas sa Pamantayang Modelo. Ang Pamantayang Modelo ay nakahanap ng mga aplikasyon sa larangang gaya ng astropisika, kosmolohiya at pisikang nukleyar.
{{unreferenced}}
==Nilalaman==
Ang '''Pamantayang Modelo''' ng [[pisika]] ay isang teoriya ng mga [[elementaryong partikulo]], na maaaring mga [[permion]] o mga [[boson]]. Ipinapaliwanag din nito ang tatlo sa apat na payak na mga puwersa ng kalikasan. Ginagamit ng Modelo ang mga bahagi ng pisikang tinatawag na [[kwantum mekaniks]] at [[espesyal na relatibidad]], at ang mga ideya ng [[larangang pisikal]] (''[[physical field]]'') at pagbabali ng [[simetriya]]. Ilan sa mga matematika ng Pamantayang Modelo ay ang [[teoriya ng pangkat]], at pati na ang mga ekwasyon na may pinakamalaki at pinakamaliit na mga punto o tuldok na tinatawag na mga Lagrangian at mga Hamiltonian.
Ang Pamantayang Modelo ay naglalaman ng 61 na mga elementaryong partikulo.<ref>
{{cite book
|author=S. Braibant, G. Giacomelli, M. Spurio
|year=2009
|title=Particles and Fundamental Interactions: An Introduction to Particle Physics
|url=http://books.google.com/?id=0Pp-f0G9_9sC&pg=PA314&lpg=PA314&dq=61+fundamental+particles#v=onepage&q=61%20fundamental%20particles&f=false
|pages=313–314
|publisher=[[Springer Science+Business Media|Springer]]
|isbn=978-94-007-2463-1
}}</ref>
 
[[File:Bosons-Hadrons-Fermions.png|thumb|500px|Klasipikasyon ng mga partikulo.]]
{{usbong|Pisika}}
 
{| class="wikitable" style="text-align:left;"
|+ Mga elementaryong partikulo
|-
|
! scope="col" | [[Generation (particle physics)|Mga uri]]
! scope="col" | [[Generation (particle physics)|Mga henerasyon]]
! scope="col" | [[Antipartikulo]]
! scope="col" | [[Color charge|Mga kulay]]
! scope="col" | Total
|-
! scope="row" | Mga [[quark]]
|2
|3
|Pares
|3
|36
|-
! scope="row" | Mga [[lepton]]
|2
|3
|Pair
|None
|12
|-
! scope="row" | Mga [[gluon]]
|1
|1
|Sarili
|[[Gluon#Eight_gluon_colors|8]]
|8
|-
! scope="row" | [[W and Z bosons|W]]
|1
|1
|Pares
|Wala
|2
|-
! scope="row" | [[W and Z bosons|Z]]
|1
|1
|Sarili
|Wala
|1
|-
! scope="row" | [[Photon]]
|1
|1
|Sarili
|Wala
|1
|-
! scope="row" | [[Higgs boson|Higgs]]
|1
|1
|Sarili
|Wala
|1
|-
!colspan="5" !scope="row"| Kabuuan
|'''61'''
|}
 
===Mga fermion===
Ang Pamantayang Modelo ay kinabibilangan ng 12 mga elementaryong partikulo ng [[ikot-½]] na kilala bilang mga [[fermion]]. Ayon sa [[teoremang ikot-estadistika]], ang mga fermion ay rumirispeto sa [[prinsipyong hindi pagsasama ni Pauli]]. Ang bawat fermion ay may tumutugong [[antipartikulo]]. Ang mga fermion ay inuuri ayon sa kung paano itong nakikipag-ugnayan o sa katumbas ay kung anong mga karga ang dinadala ng mga ito. May anim na mga quark(itaas, ibaba, charm, kakaiba, tuktok, ilalim) at mga anim na lepton(elektron, elektron neutrino, muon, muon neutrino, tau, tau neutrino). Ang mga pares mula sa bawat klasipikasyon ay pinapangkat upang bumuo ng henerasyon na tumutugong partikulo na nagpapakita ng parehong mga pag-aasal na pisikal. Ang naglalarawang katangian ng mga quark ang pagdadala ng mga ito ng [[kargang kulay]] at kaya ay nakikipag-ugnayan sa pamamagitan ng [[interaksiyong malakas]]. Ang natitirang mga anim na fermion ay hindi nagdadala ng kargang kulay at tinatawag na mga lepton. Ang tatlong mga neutrino ay hindi rin nagdadala ng kargang elektriko kaya ang mosyon ng mga ito ay direktang naiimpluwensiyahan lamang ng [[interaksiyong mahina]] na gumagawa sa mga itong mahirap madetekta. Gayunpaman, sa pagdadala ng kargang elektriko, ang elektron, muon at tau ay lahat nakikipag-ugnayan ng elektrogmagnetiko.
===Mga gauge boson===
[[Image:Elementary particle interactions.svg|400px|thumb|right|Buod ng mga interaksiyon sa pagitan ng mga partikulong nilalarawan sa Pamantayang Modelo.]]
[[Image:Standard Model Feynman Diagram Vertices.png|400px|thumb|right|Ang nasa itaas na mga interaksiyon ang bumubuo ng basehan ng pamantayang modelo. Ang mga diagramang Feynman sa pamantayang modelo ay binubuo mula sa mga berteks na ito.]]
 
Sa Pamantayang Modelo, ang mga [[gauge boson]] ay inilalarawan bilang mga tagadala ng pwersa na namamagitan ng mga interaksiyong mahina, malakas at elektromagnetiko. Ang mga gauge boson ng Pamantayang Modelo ay lahat may [[ikot]]. Ang halaga ng ikot ay 1 na gumagawa sa mga itong mga [[boson]]. Bilang resulta, ang mga ito ay hindi sumusunod sa [[prinsipyong hindi pagsasama ni Pauli]] na naglilimita sa mga fermion at kaya ang ang mga boson ay walang limitasyong teoretiko sa densidad na pang-espasyo ng mga ito. Ang iba't ibang mga gauge boson ang: [[photon]] na namamagitan ng interaksiyong elektrogmanetiko sa pagitan ng mga may kargang elektrikong partikulo, ang [[mga boson na W at ZE]], [[W and Z bosons|{{SubatomicParticle|W boson+}}, {{SubatomicParticle|W boson-}}, at {{SubatomicParticle|Z boson}}]] na namamagitan ng mga [[interaksiyong mahina]] sa pagitan ng partikulong may iba't ibang lasa, at walong mga [[gluon]] na namamagitan ng mga [[interaksiyong malakas]] sa pagitan ng mga partikulong may kargang kulay.
 
===Mga higgs boson===
{{Main|Higgs boson}}
Ang partikulong Higgs ay isang may malaking masang skalar na partikulo at isang pangunahing pantayong bloke ng Pamantayang Modelo.<ref>
{{cite journal
| author=F. Englert, R. Brout
| title=Broken Symmetry and the Mass of Gauge Vector Mesons
| journal=[[Physical Review Letters]]
| volume=13 | year=1964 | pages=321–323
| doi=10.1103/PhysRevLett.13.321
| bibcode=1964PhRvL..13..321E
| issue=9
}}</ref><ref name="Peter W. Higgs 1964 508-509">
{{cite journal
| author=P.W. Higgs
| title=Broken Symmetries and the Masses of Gauge Bosons
| journal=[[Physical Review Letters]]
| volume=13 | year=1964 | pages=508–509
| doi=10.1103/PhysRevLett.13.508
| bibcode=1964PhRvL..13..508H
| issue=16
}}</ref><ref>
{{cite journal
| author=G.S. Guralnik, C.R. Hagen, T.W.B. Kibble
| title=Global Conservation Laws and Massless Particles
| journal=[[Physical Review Letters]]
| volume=13 | year=1964
| pages=585–587
| doi=10.1103/PhysRevLett.13.585
| bibcode=1964PhRvL..13..585G
| issue=20
}}</ref><ref>
{{cite journal
| author=G.S. Guralnik
| year=2009
| title=The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles
| journal=[[International Journal of Modern Physics A]]
| volume=24 | pages=2601–2627
| doi=10.1142/S0217751X09045431
| arxiv = 0907.3466
|bibcode = 2009IJMPA..24.2601G
| issue=14 }}</ref> Ito ay walang likas na ikot at kaya ay inuuri bilang isang boson. Ito ay gumagampan ng walang katulad na papel sa Pamantayang Modelo sa pamamagitan ng pagpapaliwang kung bakit ang ibang mga partikulo ay may may malaking masa. Ito ay magpapaliwanag rin kung bakit ang photon ay walang masa samantalang ang mga boson na W at Z ay sobrang bigat. <ref>{{cite journal
|last=Lee |first=Benjamin W.
|last2=Quigg |first2=C.
|last3=Thacker |first3=H. B.
|year=1977
|title=Weak interactions at very high energies: The role of the Higgs-boson mass
|journal=[[Physical Review D]]
|volume=16 |issue=5 |pages=1519–1531
|doi=10.1103/PhysRevD.16.1519
|bibcode = 1977PhRvD..16.1519L }}</ref><ref>
{{cite news
|url=http://www.cnn.com/2009/TECH/11/11/lhc.large.hadron.collider.beam/index.html
|work=CNN
|title=Huge $10 billion collider resumes hunt for 'God particle' - CNN.com
|accessdate=4 May 2010
|date=11 November 2009
}}</ref>
==Mga aspetong teoretikal==
Ang teoriyang quantum field ay nagbibigay ng isang balangkas na matematikal para sa Pamantayang Modelo kung saan ang isang Lagrangian ay kumukontrol sa dinamika at kinematika ng teoriya. Ang pamantayang Modelo ay isa ring [[teoriyang gauge]] na nangangahulugang may mga digri ng kalayaan sa pormalismong matematikal na hindi tumutugon sa mga pagbabago sa estadong pisika. Ang [[grupong gauge]] ng pamantayang modelo ay <math>\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)</math>, kung saan ang U(1) ay umaasal sa <math>B</math> at <math>\phi</math>, ang SU(2) ay umaasal sa <math>W</math> and <math>\phi</math>, at ang SU(3) ay umaasal sa <math>G</math>. Ang fermion field <math>\psi</math> ay nagbabago rin sa ilalim ng mga simetriang ito bagaman ang lahat ng mga ito ay nag-iiwan ng ilang mga bahagi nito na hindi nagbabago.
==Mga sanggunian==
{{reflist}}
[[Kategorya:Pisika]]
[[Kategorya:Pamantayang Modelo]]