Pagkakaiba sa mga pagbabagong ng "Silogismong pangkategorya"

* OAO-3
* EIO-1
 
Maaari nating makuha ang iba pang tumpak na anyo sa ibang mga paraan. Isang paraan ay ang [[Venn diagram]]. Dahil mayroong tatlong paksa, iguguhit natin ang tatlong bilog na may kapwa-sakop bilang sagisag ng mga pangkat. Una, bubuuin natin ang bilog para sa pangunahing paksa. Katabi nito, na may kapwa-sakop, ang nakapailalim na paksa. Sa ilalim naman ang panggitnang paksa. Dapat na may kapwa-sakop sa tatlong bahagi ng diyagrama: sa pangunahing paksa, sa nakapailalim na paksa at sa kapwa-sakop ng pangunahin at nakapailalim na paksa. Kung tumpak ang silogismo, kailangan na ang katotohanan ng katapusang pangungusap ay maipapakita sa diyagrama ng mga palagay. hindi dapat iguhit ang katapusang pangungusap, dahil nagmumula sa mga palagay ang
katapusang pangungusap. Dapat na maunang iguhit ang pangkalahatang palagay. Magagawa ito sa pagdidiin-kulay kung saan ang isang pangkat ay walang sangkap sa kabilang pangkat. Ibig sabihin, may diin-kulay ang hindi kasali sa isang pangkat. Kaya sa palagay na "Lahat ng A ay B", may diin-kulay ang lahat ng bahagi na kung saan walang nilalamang A na kapwa-sakop ng B, pati na rin sa bahagi na sakop ng K. Ganoon din ang kailnganag gawin para sa ikalawang palagay. Mula sa dalawang palagay na ito, maikakatwiran natin na lahat ng kasapi sa pangkat na K ay kasali din sa pangkat na B. Ngunit hindi natin masasabi na na lahat ng kasapi sa pangkat na B ay kasali sa pangkat na K. Totoo lamang ito sa iisang direksyon.
 
==Itutuloy ang pagsasalin==
You can obtain the remaining valid forms via the other methods. One method is to construct a [[Venn diagram]]. Since there are three terms, a Venn diagram will require three overlapping circles which represent each class. First, construct a circle for the major term. Adjacent to the circle for the major term will be an overlapping circle for the minor term. Beneath those two will be the circle for the middle term. It should overlap at three places: the major term, the minor term and the place at which the major term and minor term overlap. If the syllogism is valid it would necessitate the truth of the conclusion by diagramming the premises. Never diagram the conclusion, for the conclusion must be inferred from the premises. Always diagram the universal propositions first. This is accomplished by shading the areas in which one class does not have membership in the other class. In other words, shaded is equated with non-membership. So in the premise All A is B shade in all areas in which A does not over-lap with B, including where A overlaps with C. Then repeat the same procedure for the second premise. From those two premises we can infer that all members in the class of C also have membership in the class of B. However, we can not infer that all members of the class of B have membership in the class of C.
 
As another example of this method, consider a syllogism of the form EIO-1. Let its first premise be "No B is an A", its second premise be "Some Cs are Bs" and its conclusion be "Some Cs are not As." This syllogism's major term is A; its minor term is C, and its middle term is B. The first premise is shown on the diagram by shading the intersection A ∩ B. The second premise cannot be represented by shading any area. Instead, we may use the ∃ (existence) symbol in the non-shaded portion of the intersection B ∩ C in order to signify that "Some Cs are Bs." (N.B. Shaded areas and [[existential quantifier|existentially quantified]] areas are mutually exclusive.) Then, since this existence symbol lies within C but outside of A, then it is correct to conclude that "There exist some Cs which are not As."
Hindi nakikilalang mga tagagamit