Talaksan:Greenhouse Effect (2017 NASA data).svg

Buong resolusyon ((Larawang SVG, tinatayang 960 × 960 mga pixel, laki ng talakasan: 7 KB))

Buod

Paglalarawan
English: This figure is a simplified, schematic representation of the flows of energy between space, the atmosphere, and the Earth's surface, and shows how these flows combine to trap heat near the surface and create the greenhouse effect. Energy exchanges are expressed in watts per square meter (W/m2).

Data is from 2007 CERES satellite instruments, and specifically this diagram

Year 2021 update (not in diagram): Net absorbed energy (shown as 0.6) rose to above 1.0 W/m2 based on independent CERES and ocean heat content measurements.(see fig.1 in Loeb et al.(2021), Geoph. Res. Let 48 (13), doi:10.1029/2021GL093047)

The sun is responsible for virtually all energy that reaches the Earth's surface. Direct overhead sunlight at the top of the atmosphere provides 1366 W/m2; however, geometric effects and reflective surfaces limit the light which is absorbed at the typical location to an annual average of ~235 W/m2. If this were the total heat received at the surface, then, neglecting changes in albedo, the Earth's surface would be expected to have an average temperature of -18 °C (Lashof 1989). Of the surface heat captured by the atmosphere, more than 75% can be attributed to the action of greenhouse gases that absorb thermal radiation emitted by the Earth's surface. The atmosphere in turn transfers the energy it receives both into space (38%) and back to the Earth's surface (62%), where the amount transferred in each direction depends on the thermal and density structure of the atmosphere. This process by which energy is recycled in the atmosphere to warm the Earth's surface is known as the greenhouse effect and is an essential piece of Earth's climate. Under stable conditions, the total amount of energy entering the system from solar radiation will exactly balance the amount being radiated into space, thus allowing the Earth to maintain a constant average temperature over time.

However, recent measurements indicate that the Earth is presently absorbing 0.85 ± 0.15 W/m2 more than it emits into space (Hansen et al. 2005). An overwhelming majority of climate scientists believe that this asymmetry in the flow of energy has been significantly increased by human emissions of greenhouse gases [1]. This figure was created by Robert A. Rohde from published data and is part of the Global Warming Art project.
Pinanggalingan
May-akda Robert A. Rohde (Dragons flight at English Wikipedia)
Iba pang mga bersyon

[baguhin]

SVG genesis
InfoField
 
The SVG code is valid.
 
This diagram was created with Inkscape, or with something else.
 
 This diagram uses embedded text that can be easily translated using a text editor.

Paglilisensiya

GNU head Ipinagkaloob ang pahintulot na kopyahin, ipamahagi at/o baguhin ang kasulatang ito sa ilalim ng mga patakaran ng Lisensya ng Malayang Dokumentasyon ng GNU, Bersyong 1.2 ayon lamang sa pagkakalathala ng Pundasyon ng Malayang Sopwer; na walang Mga Seksyong Hindi Nagbabago, walang mga Teksto ng Pangharap na Pabalat, at walang Mga Teksto ng Panglikod na Pabalat. Kasama ang isang sipi ng lisensya sa seksyong pinamagatang Lisensya ng Malayang Dokumentasyon ng GNU. 1.2 lamang

References used in description

  • Kiehl, J. T. and Trenberth, K. E. (1997). "Earth's Annual Global Mean Energy Budget". Bulletin of the American Meteorological Association 78": 197-208.
  • Daniel A. Lashof (1989). "The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change". Climatic Change 14 (3): 213-242.
  • James Hansen, Larissa Nazarenko, Reto Ruedy, Makiko Sato, Josh Willis, Anthony Del Genio, Dorothy Koch, Andrew Lacis, Ken Lo, Surabi Menon, Tica Novakov, Judith Perlwitz, Gary Russell, Gavin A. Schmidt, Nicholas Tausnev (2005). "Earth's Energy Imbalance: Confirmation and Implications". Science 308 (5727): 1431-1435.

Captions

Add a one-line explanation of what this file represents
Energy flows between space, the atmosphere, and Earth's surface, with greenhouse gases in the atmosphere absorbing and emitting radiant heat, affecting Earth's energy balance.

Items portrayed in this file

depicts English

copyrighted English

media type English

image/svg+xml

Nakaraan ng file

Pindutin ang araw/oras upang makita kung papaano ang itsura ng talaksan noong oras na iyon.

Araw/OrasThumbnailMga dimensiyontagagamitKumento
ngayon15:12, 23 Hunyo 2023Thumbnail para sa bersyon noong 15:12, 23 Hunyo 2023960 × 960 (7 KB)Efbrazilthermal radiation --> longwave radiation as per discussion
16:09, 22 Mayo 2023Thumbnail para sa bersyon noong 16:09, 22 Mayo 2023960 × 960 (7 KB)Efbrazilgraphical tweaks
20:00, 19 Mayo 2023Thumbnail para sa bersyon noong 20:00, 19 Mayo 2023960 × 960 (7 KB)EfbrazilFurther tweak to word wrap
17:56, 19 Mayo 2023Thumbnail para sa bersyon noong 17:56, 19 Mayo 2023960 × 960 (7 KB)EfbrazilGraphic enhancements, content unchanged
18:05, 11 Mayo 2023Thumbnail para sa bersyon noong 18:05, 11 Mayo 2023960 × 960 (7 KB)EfbrazilUpdating diagram to be based on newer data here: https://www.nasa.gov/feature/langley/what-is-earth-s-energy-budget-five-questions-with-a-guy-who-knows

Nakaturo sa talaksan na ito ang mga sumusunod na mga pahina:

Pandaigdigang paggamit sa file

Ginagamit ng mga sumusunod na wiki ang file na ito:

Tingnan ang karagdagang pandaigdigang paggamit sa file na ito.

Metadata