Talaksan:VFPt metal balls largesmall potential+contour.svg

Buong resolusyon((Larawang SVG, tinatayang 800 × 600 mga pixel, laki ng talakasan: 183 KB))

Buod

Paglalarawan
English: Electric field around a large and a small conducting sphere at opposite electric potential. The shape of the field lines is computed exactly, using the method of image charges with an infinite series of charges inside the two spheres. Field lines are always orthogonal to the surface of each sphere. In reality, the field is created by a continuous charge distribution at the surface of each sphere, indicated by small plus and minus signs. The electric potential is depicted as background color with yellow at 0V together with equipotential lines.
Petsa
Pinanggalingan Sariling gawa
May-akda Geek3
Iba pang mga bersyon
SVG genesis
InfoField
 
The SVG code is valid.
 
This plot was created with VectorFieldPlot.
 
This file uses embedded text.
Source code
InfoField

Python code

# paste this code at the end of VectorFieldPlot 3.1
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
u = 100.0
doc = FieldplotDocument('VFPt_metal_balls_largesmall_potential+contour',
    commons=True, width=800, height=600, unit=u)

# define spheres with position and radius
s1 = {'c':sc.array([-1.0, 0.]), 'r':1.5}
s2 = {'c':sc.array([2.0, 0.]), 'r':0.5}
spheres = [s1, s2]

def U_sphere(sphere, charges):
    f = Field([ ['monopole', {'x':c['p'][0], 'y':c['p'][1], 'Q':c['Q']}] for c in charges])
    return sc.mean([f.V(sphere['c'] + sphere['r'] * array((cos(phi), sin(phi))))
        for phi in sc.linspace(0, 2*pi, 64, endpoint=False)])

def Q_sphere(isphere, charges):
    return sum([c['Q'] for c in charges if c['i'] == isphere])

# compute series of charges https://dx.doi.org/10.2174/1874183500902010032
def mirrored_charges(p, Q, isphere, spheres, Qmin):
    '''
    Recursive function. Returns list of mirrored charges for n spheres
    '''
    if fabs(Q) < Qmin:
        return []
    charges = [{'p':p, 'Q':Q, 'i':isphere}]
    for i, s in enumerate(spheres):
        if i != isphere:
            pnew = s['c'] + (p - s['c']) * (s['r'] / vabs(p - s['c']))**2
            Qnew = -Q * s['r'] / vabs(p - s['c'])
            charges += mirrored_charges(pnew, Qnew, i, spheres, Qmin)
    return charges

charges_raw = [mirrored_charges(s['c'], 1., si, spheres, 1e-4) for si,s in enumerate(spheres)]
# Use charge normalization from paper above
# Here one can also solve for charge conditions such as neutrality
matrixU = [ [U_sphere(s, cs) for cs in charges_raw] for s in spheres]
matrixQ = [ [Q_sphere(si, cs) for cs in charges_raw] for si in range(len(spheres))]
U0, U1 = 1., -1
charge_factors = sc.linalg.solve(matrixU, [U0, U1])
for il in range(len(charges_raw)):
    for ic in range(len(charges_raw[il])):
        charges_raw[il][ic]['Q'] *= charge_factors[il]

charges = [c for cl in charges_raw for c in cl]
charges = sorted(charges, key=lambda x: -fabs(x['Q']))
for si, s in enumerate(spheres):
    s['U'] = U_sphere(s, charges)
    s['Q'] = Q_sphere(si, charges)
    #print('sphere', si, s, 'U =', s['U'], 'Q =', s['Q'])
print('using', len(charges), 'mirror charges.')

field = Field([ ['monopole', {'x':c['p'][0], 'y':c['p'][1], 'Q':c['Q']}] for c in charges])

def pot(xy):
    for s in spheres:
        if vabs(xy - s['c']) <= s['r']:
            return s['U']
    return field.V(xy)

doc.draw_scalar_field(func=pot, cmap=doc.cmap_AqYlFs, vmin=U1, vmax=U0)
doc.draw_contours(func=pot, linewidth=1, linecolor='#444444',
    levels=sc.linspace(U1, U0, 17)[1:-1])

# draw symbols
#for c in charges:
#    doc.draw_charges(Field([ ['monopole', {'x':c[0][0], 'y':c[0][1], 'Q':c[1]}] ]),
#        scale=0.6*sqrt(fabs(c[1])))

gradr = doc.draw_object('linearGradient', {'id':'rod_shade', 'x1':0, 'x2':0,
    'y1':0, 'y2':1, 'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#666', 0), ('#ddd', 0.6), ('#fff', 0.7), ('#ddd', 0.8),
    ('#888', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradr)
gradb = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53',
    'cy':'0.54', 'r':'0.55', 'fx':'0.65', 'fy':'0.7',
    'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25),
    ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradb)

ball_charges = []
for ib, s in enumerate(spheres):
    ball = doc.draw_object('g', {'id':'metal_ball{:}'.format(ib+1),
        'transform':'translate({:.3f},{:.3f})'.format(*(s['c'])),
        'style':'fill:none; stroke:#000;stroke-linecap:square', 'opacity':1})
    
    # draw rods
    if ib == 0:
        x1, x2 = -4.1 - s1['c'][0], -0.9 * s1['r']
    else:
        x1, x2 = 0.9 * s2['r'], 4.1 - s2['c'][0]
    doc.draw_object('rect', {'x':x1, 'width':x2-x1,
        'y':-0.1/1.2+0.01, 'height':0.2/1.2-0.02,
        'style':'fill:url(#rod_shade); stroke-width:0.02'}, group=ball)
    
    # draw metal balls
    doc.draw_object('circle', {'cx':0, 'cy':0, 'r':s['r'],
        'style':'fill:url(#metal_spot); stroke-width:0.02'}, group=ball)
    ball_charges.append(doc.draw_object('g',
        {'style':'stroke-width:0.02'}, group=ball))

def startpath1(t):
    phi = 2. * pi * t
    return s2['c'] + 1.5 * array([cos(phi), sin(phi)])

def startpath2(t):
    phi = 2. * pi * t
    return s1['c'] + s1['r'] * array([cos(phi), -sin(phi)])
    
nlines1 = 16
startpoints = Startpath(field, startpath1).npoints(nlines1)
nlines2 = 14
startpoints += Startpath(field, startpath2, t0=0.195, t1=1-0.195).npoints(nlines2)

for ip, p0 in enumerate(startpoints):
    line = FieldLine(field, p0, directions='both', maxr=7.,
        bounds_func=lambda xy: max([s['r'] - vabs(xy-s['c']) for s in [s1, s2]]))
    
    # draw little charge signs near the surface
    path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./u, 4./u)
    path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./u, 4./u)
    for si in range(2):
        sphere = [s1, s2][si]
        
        # check if fieldline ends inside the sphere
        for ci in range(2):
            if (vabs(line.get_position(ci) - sphere['c']) < sphere['r'] and
                vabs(line.get_position(1-ci) - sphere['c']) > sphere['r']):
                # find the point where the field line cuts the surface
                t = optimize.brentq(lambda t: vabs(line.get_position(t)
                    - sphere['c']) - sphere['r'], 0., 1.)
                pr = line.get_position(t) - sphere['c']
                cpos = (-0.06 + 0.96 * sphere['r']) * vnorm(pr)
                doc.draw_object('path', {'stroke':'black', 'd':
                    [path_plus, path_minus][ci],
                    'transform':'translate({:.5f},{:.5f})'.format(
                        round(u*cpos[0])/u, round(u*cpos[1])/u)},
                        group=ball_charges[si])
    
    arrow_d = 2.0
    of = {'start':0.5 + s1['r'] / arrow_d, 'leave_image':0.45,
          'enter_image':0.5, 'end':0.5 + s2['r'] / arrow_d}
    ar_st = {'dist':arrow_d, 'offsets':of}
    if ip >= nlines1:
        ar_st = {'potential':pot, 'at_potentials':[0.55*U0]}
    ar_st['scale'] = 1.2
    doc.draw_line(line, arrows_style=ar_st)
doc.write()

Paglilisensiya

Ako, na may karapatang-ari ng akdang ito, ang naglalathala nito alinsunod sa ilalim ng sumusunod na mga lisensya:
w:tl:Creative Commons
atribusyon share alike
Ang talaksang ito ay nakalisensiya sa ilalim ng lisensiyang Creative Commons Atribusyon-Pagpapamahaging Magkatulad 4.0 Pandaigdig.
Malaya kang:
  • para ibahagi – para kopyahin, ipamahagi, at i-transmit ang akda
  • para i-remix – para i-adapt ang akda
Sa ilalim ng mga kondisyong ito:
  • atribusyon – Dapat magbigay ka ng isang maayos na pag-credit, ibigay ang link sa lisensiya, at tukuyin kung may mga pagbabagong ginawa. Magagawa mo ito sa isang risonableng paraan, pero hindi sa paraan na para bang ineendorso ka o ng paggamit mo ng naglisensiya sa'yo.
  • share alike – Kung ire-remix mo, babaguhin, o magdadagdag ka sa materyal, dapat mong ipamahagi ang mga ambag mo sa ilalim ng pareho o katulad na lisensiya.

Captions

Add a one-line explanation of what this file represents
Electric field around a large and a small sphere at opposite potential

Items portrayed in this file

depicts English

copyrighted English

30 Mayo 2020

media type English

image/svg+xml

Nakaraan ng file

Pindutin ang araw/oras upang makita kung papaano ang itsura ng talaksan noong oras na iyon.

Araw/OrasThumbnailMga dimensiyontagagamitKumento
ngayon12:37, 30 Mayo 2020Thumbnail para sa bersyon noong 12:37, 30 Mayo 2020800 × 600 (183 KB)Geek3Uploaded own work with UploadWizard

Nakaturo sa talaksan na ito ang mga sumusunod na mga pahina:

Pandaigdigang paggamit sa file

Ginagamit ng mga sumusunod na wiki ang file na ito:

Metadata